к оглавлению

2. Историческое развитие концепции эфира

Наиболее ранние письменные свидетельства об устройстве материи и вакуума известны нам из работ философов Китая и Греции [4, 5].

В середине первого тысячелетия до новой эры китайскими философами была выдвинута гипотеза, что все сущее состоит из двух противоположных по знаку начал - инь и ян [4]. Инь и ян - категории, выражающие идею дуализма мира: пассивное и активное, мягкое и твердое, внутреннее и внешнее, женское и мужское, земное и небесное и т.д. В традиционной космогонии появление категорий инь и ян знаменует первый шаг от хаотического единства первозданной пневмы (ци) к многообразию, наблюдаемому во всей вселенной. Философ Лао Цзы утверждал, что инь и ян определяют не только развитие, но и устройство всего сущего в мире.

Философы Древней Греции всесторонне занимались проблемами универсума и космогонии. Именно они дали название эфир той всепроникающей, неуловимой, не подлежащей нашим ощущениям материи. Наиболее непротиворечивой нам представляется модель эфира, предложенная Демокритом [5]. Он утверждал, что в основе всех элементарных частиц лежат амеры - истинно неделимые, лишенные частей. Амеры, являясь частями атомов, обладают свойствами, совершенно отличными от свойств атомов, - если атомам присуща тяжесть, то амеры полностью лишены этого свойства. Вся же совокупность амеров, перемещающихся в пустоте, по Анаксимандру, является общей мировой средой, эфиром или апейроном.

Хотя явления, связанные с электричеством и магнетизмом были известны и в древние времена, история возникновения науки по магнетизму и электричеству начинается с работы придворного врача королевы Британии Елизаветы Гильберта, опубликованной в 1600 г. [6]. Гильберт заметил множество отличий между электрической и магнитной силами. Магнитный камень не нужно тереть, как стекло или серу, чтобы привести в действие его магнитные свойства. Магнитный камень притягивает только вещества, которые он способен притянуть, тогда как наэлектризованные предметы притягивают все. На магнитное притяжение никак не повлияет лист бумаги или кусок холста, помещенный между телами, не повлияет на него и погружение этих тел в воду, тогда как электрическое притяжение легко нарушить с помощью экранов. Наконец, магнитная сила стремится сориентировать тела в определенном направлении, а электрическая сила просто стремится объединить их в бесформенные группы.

Творцы основ современной математики и физики считали эфир материальной средой. Например, Рене Декарт писал, что пространство все сплошь заполнено материей. Образование видимой материи, планет, по Декарту, происходит из вихрей эфира. Ньютон утверждал, что полагать, "что одно тело может воздействовать на другое, находящееся от него на некотором расстоянии, через вакуум без каких либо "посредников", : - для меня настолько абсурдно, что по-моему, ни один человек, обладающий хотя бы малейшим представлением о философских материях, не может в это верить" [7]. В конце своей жизни Исаак Ньютон объяснял наличие силы тяготения давлением эфирной среды на материальное тело. Согласно его последним воззрениям, градиент плотности эфира является необходимым, для того, чтобы устремлять тела от более плотных областей эфира к менее плотным. Однако чтобы тяготение проявлялось таким образом, каким оно наблюдается нами, эфир должен, по Ньютону, обладать очень большой упругостью.

Изучение свойств эфира продолжалось следующими поколениями ученых. Оказалось, что фокусное расстояние ахроматического телескопа следует увеличить, если он направлен к звезде, к которой движется Земля [8]. Араго сделал вывод, что свет, исходящий от любой звезды, во всех случаях отражения и преломления ведет себя точно так же, как он вел бы себя, если бы эта звезда находилась на том месте, которое она, видимо, занимает в результате аберрации, а Земля находилась бы в состоянии покоя.

Френель принял предложение Юнга о том, что преломляющая способность прозрачных тел зависит от концентрации в них эфира и начал разрабатывать теорию взаимодействия эфира с веществом. Вот что пишет Э. Уиттекер по этому поводу в своем замечательном обзоре по истории развития представлений об эфире и электричестве [8]. "Араго уточнил это предположение, допустив, что плотность эфира в любом теле пропорциональна квадрату показателя преломления". Таким образом, если с обозначает скорость света в вакууме, а с1

- скорость света в данном материальном теле, которое находится в состоянии покоя, так что μ = с/с1 - показатель преломления, то плотности эфира ρ и ρ1в межпланетном пространстве и теле соответственно будут связаны отношением ρ1 = μ2ρ.

Затем Френель предположил, что при движении тело увлекает часть находящегося в нем эфира, а именно, ту часть, которая составляет избыток плотности этого эфира по сравнению с плотностью эфира в вакууме, тогда как весь остальной эфир в этом теле неподвижен. Таким образом, плотность движущегося эфира равна (ρ1 - ρ) или (μ2 - 1)ρ, а эфир с плотностью ρ остается неподвижным. Тогда скорость, с которой центр тяжести эфира в теле движется вперед в направлении распространения, равна [(μ2 - 1)/(μ2)]ω, где ω обозначает составляющую скорости движения тела в этом направлении. Эту составляющую следует прибавить к скорости распространения световых волн в теле, тогда абсолютная скорость света в движущемся теле

с1 + [(μ2 − 1)/(μ2)]ω. (1)

В дальнейшем выявился очевидный недостаток теории Френеля, состоящий в том, что его теория требовала, чтобы относительная скорость эфира и материи была различна для света различных цветов.

Много лет спустя то же самое предположение, но в несколько иной форме выдвинул Стокс [9]. Допустим, что весь эфир в теле движется одновременно: эфир, который входит в тело спереди и сразу же сгущается, и эфир, который выходит позади тела, где он сразу же разрежается. При таком допущении масса эфира ρw должна проходить в единицу времени через единичную площадь плоскости, проведенной в любом месте внутри тела под прямым углом к направлению движения тела, а следовательно, эфир в теле обладает скоростью дрейфа, равной −ρω/ρ1относительно этого тела; тогда скорость света относительно тела будет с1ρω/ρ1, а абсолютная скорость света в движущемся теле будет с1 + ω ρω/ρ1или с1 + [(μ2 − 1)/(μ2)]ω, как и раньше. В 1851 году эту формулу экспериментально подтвердил И. Физо, который измерил смещение интерференционных полос, образованных светом, который прошел через трубку с текущей водой [10].

Первую серьезную попытку дать математическое описание эфира сделал МакКулаг (MacСullagh) в 1839 г. Согласно МакКулагу, эфир является средой, жестко закрепленной в мировом пространстве. Эта среда оказывает упругое сопротивление деформациям поворота и описывается антисимметричным тензором второго ранга, члены главной диагонали которого равны нулю [11]. Последующими учеными было показано, что эфир МакКулага описывается уравнениями Д. Максвелла для пустого пространства [12].

МакКулаг предложил следующее уравнение движения эфирной среды:

(2)

где ε- диэлектрическая проницаемость, e r - упругое смещение, t - время.

В этом уравнении, как отмечает МакКулаг, диэлектрическая проницаемость ε соответствует величине, обратной постоянной упругости [11].

В своем обзоре [8] Э. Уиттекер замечает, что работа МакКулага вызвала сомнения как у современных ему специалистов по математической физике, так и у специалистов следующего поколения. Можно сказать, что она получила должную оценку только через 40 лет, когда внимание к ней было обращено со стороны других ученых. Однако нет сомнения в том, что МакКулаг действительно разработал теорию, по которой колебания в среде, вычисленные по правильным законам динамики, должны обладать теми же свойствами, что и колебания света. До конца девятнадцатого века среди выдающихся ученых велись споры, следует ли считать эфирную среду квазитвердым телом, которое подвергается деформациям под воздействием магнитных и электрических сил. Или эфир представляет собой квазижидкое тело, частицы которого под воздействием тех же сил совершают вихревые движения.

Из классиков естествознания одно из наиболее разработанных определений эфира дал Джеймс Клерк Максвелл [13]: "Эфир отличен от обыкновенной материи. Когда свет движется через воздух, то очевидно, что среда, по которой свет распространяется, не есть сам воздух, потому что, во-первых воздух не может передавать поперечных колебаний, а продольные колебания, им передаваемые, распространяются почти в миллион раз медленнее света":

"Нельзя допустить, что строение эфира подобно строению газа, в котором молекулы находятся в состоянии хаотического движения, ибо в такой среде поперечное колебание на протяжении одной длины волны ослабляется до величины менее, чем одна пятисотая начальной амплитуды: Но мы знаем, что магнитная сила в некоторой области вокруг магнита сохраняется, пока сталь удерживает свой магнетизм и так как у нас нет оснований к допущению, что магнит может потерять весь свой магнетизм просто с течением времени, то мы заключаем, что молекулярные вихри не требуют постоянной затраты работы на поддержание своего движения:".

"С какими бы трудностями в наших попытках выработать состоятельное представление о строении эфира ни приходилось нам сталкиваться, но несомненно, что межпланетное и межзвездное пространство не суть пространства пустые, но занятые материальной субстанцией или телом, самым обширным и, надо думать, самым однородным, какое только нам известно".

Вряд ли можно избежать вывода, утверждал Максвелл, о том, что свет состоит из поперечного волнового движения той же среды, которая вызывает электрические и магнитные явления.

Максвелл, а впоследствии и Герц пытались распространить теорию электромагнитного поля на случай, когда весомые тела находятся в движении. В обзоре [8] отмечается, что, эти попытки нельзя назвать абсолютно успешными. Ни один из них не учел движение материальных частиц относительно связанного с ними эфира, так что в обоих исследованиях движущиеся тела рассматривали просто как однородные части среды, заполняющей все пространство, причем эти части отличаются друг от друга только особыми значениями электрической и магнитной постоянных. Очевидно, что это допущение не согласуется с теорией Френеля объясняющей оптическое поведение движущихся прозрачных тел.

В отличие от Максвелла Стокс в 1845 году показал, что явление аберрации можно объяснить, приняв концепцию невихревого эфира [9]. "Допустим, что движение Земли сообщает движение соседним порциям эфира. Это движение можно рассматривать как наложенное на колебательное движение эфирных частиц при распространении света: следовательно, ориентация волновых фронтов света в общем изменится, тем самым будет оказано воздействие на направление, в котором мы видим небесное тело и которое первоначально является нормальным по отношению к волновым фронтам. Но если эфир находится в невихревом движении, так что его элементы не вращаются, несложно увидеть, что на направление распространения света в пространстве не будет оказано никакого влияния; световое возмущение по-прежнему распространяется по прямым линиям от звезды, а нормаль к волновому фронту в любой точке отклоняется от этой линии распространения на небольшой угол u/с, где u - составляющая скорости эфира в данной точке, разложенной перпендикулярно линии распространения света, а с - скорость света. Если допустить, что эфир вблизи Земли находится в состоянии покоя относительно земной поверхности, то будет казаться, что звезда смещена к направлению движения Земли на угол, измеряемый отношением скорости Земли к скорости света, умноженным на синус угла между направлением движения Земли и линией, соединяющей Землю со звездой. Это в точности отражает закон аберрации".

Один из творцов классической физики У. Томсон усиленно занимался разработкой моделей и механизмов взаимодействия физических тел и полей с эфиром. Например, У.Томсон заметил, что стержневой электромагнит, эквивалентный току, циркулирующему в намотанном вокруг него проводе, можно сравнить с прямой трубкой, погруженной в идеальную жидкость, которая втекает в нее с одного конца и вытекает с другого, так, что частицы жидкости движутся вдоль магнитных силовых линий [14]. Если две такие трубки поместить однородными концами друг к другу, они притягиваются; если их поместить разнородными концами, они отталкиваются. Эта схема действительно привлекает близостью характера действия магнитных сил и взаимодействия трубок, заполненных идеальной жидкостью.

Однако есть одно принципиальное отличие, не позволяющее считать эту аналогию правомерной. Например, ферромагнитная частица, притянутая соленоидом, остается внутри его. При этом частица, попавшая внутрь трубки с движущейся идеальной жидкостью с одной стороны, обязательно будет выноситься в пространство с другой стороны трубки хотя бы потому, что сохранит инерцию движения.

Томсон также разрабатывал концепцию несжимаемой эфирной среды, состоящей из "атомов, условно, красных и синих", связанных между собой жесткими связями и располагающихся в узлах решетки Браве [15]. По его концепции предполагается, что эфир является квазижестким и абсолютно сопротивляется любым поворотам (вращению). Эфир Томсона может быть подвержен сдвиговой деформации. Для того, чтобы модель эфира отвечала условию абсолютного сопротивления повороту, на жестких связях Томсон расположил вращающиеся гироскопы. Гироскопы могут быть представлены потоками несжимаемой жидкости. Угловая скорость движения в каждом из гироскопов может быть бесконечно велика. При этом условии пространственная сеть разноориентированных гироскопов окажет бесконечно большое сопротивление повороту эфирной среды вокруг любой оси. Построенная таким образом модель эфира, по концепции Томсона, способна передавать колебания подобно тому, как это делает природный эфир.

Без сомнения, модель У. Томсона практически не согласуется с современными представлениями. Она очень сложна. Трудно представить гироскопы с бесконечно большой угловой скоростью. Сравнительно простые рассуждения приводят к выводу, что бесконечно большая скорость требует бесконечно большой энергии. Не совсем ясно, как сопрягаются области гироскопов, в которых вращение происходит вокруг взаимно перпендикулярных осей. Томсон не объясняет, какой физический механизм осуществляет жесткие связи. Вместе с этим, по нашему мнению, концепция эфирной среды, состоящей из "атомов" двоякого рода, соединенных жесткими связями, находящихся в узлах определенной решетки, представляется рациональной.

Затем У. Томсон пришел к выводу, что уравнения распространения света не более чем уравнения поперечных колебаний в упругом твердом теле. Исходя из этой концепции, им была представлена модель, в которой смещения внутри эфирной среды сравниваются со смещением в упругом твердом теле [15]. По его модели, магнитная индукция в любой точке может быть представлена поворотом объемного элемента твердого тела из положения равновесия. Электрическая сила равна

(3)

а магнитная индукция -

(4)

где ë - упругое смещение. В заключение упругое твердое тело обыкновенного типа Томсон заменил эфирной средой типа МакКулага.

Новое развитие концепция эфира получила в связи с опытами Майкельсона [16]. В конце 19 века А.Майкельсон решил, что если направить пучки лучей в интерферометре по равному пути параллельно и перпендикулярно направлению движения Земли, то можно получить некоторую разность времени прохождения этих лучей. Он получил интерференционные полосы между двумя пучками света, которые прошли по перпендикулярным траекториям; но когда аппарат повернули на 90 градусов, так чтобы разность стала противоположной, ожидаемого смещения полос не произошло. Майкельсон счел этот результат доказательством теории Стокса, в которой предполагается, что эфир, находящийся вблизи Земли, движется.

В 1882 году П.Г. Тэт предположил, что "если бы эфир находился в движении относительно Земли, то абсолютные отклонения линий в дифракционном спектре должны быть различны в различных азимутах" [17].

Продолжение опыта Майкельсона и Морли последовало в 1897 году, когда Майкельсон попытался опытным путем определить, изменяется ли относительное движение Земли и эфира с изменением вертикальной высоты над поверхностью Земли [18]. Однако не было получено никакого результата, который указал бы на то, что скорость света зависит от расстояния до центра Земли. Майкельсон заключил, что, если бы нужно было выбрать между теориями Френеля и Стокса, то следовало бы принять теорию последнего и допустить, что влияние Земли на эфир простирается на многие тысячи километров над ее поверхностью.

Тем временем, дилемма, существующая в этом предмете, еще более обострилась под влиянием экспериментальных результатов, которые указывали направление, противоположное направлению Майкельсона. В 1892 году О. Лодж [19] наблюдал интерференцию между двумя порциями раздвоенного луча света, которые заставили двигаться в противоположных направлениях по замкнутой траектории в пространстве, ограниченном двумя быстро вращающимися стальными дисками. Наблюдения показали, что скорость света не подвержена влиянию прилегающей материи в степени 1/200-й доли скорости материи. Продолжая свои исследования, Лодж сильно намагнитил движущуюся материю (в его опыте это было железо), так чтобы свет распространялся через движущееся магнитное поле; и наэлектризовал ее, так чтобы траектория лучей находилась в движущемся электростатическом поле; но ни в одном случае на скорость света не было оказано ощутимого влияния.

Гендрик Антон Лоренц попытался разрешить возникшие противоречия в объяснении природы эфира. Он преобразовал гипотезу Френеля таким образом, что в его теории весомое тело, которое находится в движении, переносит с собой избыток эфира, который оно содержит по сравнению с пространством, свободным от материи [8]. Лоренц также предположил, что поляризованные молекулы диэлектрика, подобно множеству маленьких конденсаторов, увеличивают диэлектрическую постоянную, и именно это (так называемое) увеличение диэлектрической постоянной перемещается вместе с движущейся материей. Таким образом, устранялся недостаток теории Френеля, требовавший, чтобы относительная скорость эфира и материи была различна для света различных цветов. Теория Лоренца требует только разных значений диэлектрической постоянной для света разных цветов, а теория дисперсии дает этому требованию удовлетворительное объяснение.

Правильность гипотезы Лоренца, в противоположность гипотезе Герца (в которой предполагалось, что движущееся тело переносит с собой весь содержащийся в нем эфир), впоследствии подтвердили различные опыты. В 1901 году Р.Блондло провел воздушный поток через магнитное поле, перпендикулярно магнитным силовым линиям [20]. Воздушный поток был направлен между пластинами конденсатора, которые соединял провод, так чтобы они имели равный потенциал. В воздухе, при его движении в магнитном поле, создавалась электродвижущая сила Е'.Согласно теории Герца эта сила должна создавать электрическую индукцию D величины εЕ' (где ε обозначает диэлектрическую проницаемость воздуха, которая равна практически единице), так что, согласно теории Герца, пластины конденсатора должны зарядиться. Согласно теории Лоренца, с другой стороны, электрическая индукция D определяется уравнением

D = E + (e − 1)E' ,

где Е обозначает электрическую силу, действующую на заряд, который находится в состоянии покоя; в данном случае эта сила равна нулю. Таким образом, согласно теории Лоренца, заряды на пластинах конденсатора будут иметь только (ε − 1)/ε часть от значения, которое они должны иметь по теории Герца, то есть, практически, они будут равны нулю. Результат, полученный Блондло, свидетельствовал в пользу теории Лоренца.

Опыт подобного характера проделал в 1905 году Г.А. Вильсон [21]. В этом опыте пространство между внутренней и наружной обкладками цилиндрического конденсатора было заполнено диэлектриком - эбонитом. Когда между обкладками такого конденсатора поддерживают определенную разность потенциалов, на них индуцируются заряды. Если конденсатор вращать вокруг его оси в магнитном поле, силовые линии которого параллельны этой оси, то эти заряды будут изменяться из-за дополнительной поляризации, которая возникает в молекулах диэлектрика при их движении в магнитном поле. Как и ранее, значение дополнительного заряда, согласно теории Лоренца, в (ε − 1)/ε раз больше его значения, вычисленного по теории Герца. Результат опытов Вильсона, как и результат опытов Блондло, оказался в пользу теории Лоренца.

Примирение электромагнитной теории с законом Френеля о распространении света в движущихся телах было явным шагом вперед. Однако существовала сложность, которая препятствовала теории неподвижного эфира: в своем начальном виде она не могла объяснить отрицательный результат опыта Майкельсона и Морли. В 1892 году Фитцджеральд предложил, что при движении материальных тел относительно эфира их размеры немного изменяются [22]. Затем эту гипотезу Фитцджеральда принял Лоренц, после чего круг людей, которые приняли эту идею, начал постепенно расширяться и был принят физиками-теоретиками.

Рассмотрим, как эта гипотеза объясняет результат, полученный Майкельсоном. Если допустить, что эфир неподвижен, то один из двух лучей, на которые разделяется исходный световой луч, направленный вдоль движения Земли, должен пройти свой путь быстрее, чем другой, направленный поперек этому движению. Эту разницу можно было бы полностью компенсировать, если бы путь, совпадающий с направлением движения Земли, был короче пути луча, направленного поперек движения. Это могло произойти, если бы линейные размеры движущихся тел всегда сокращались в направлении их движения в отношении (1 − V2/2C2) к единице (V - скорость тела, C - скорость света). В этом и есть смысл гипотезы Фитцджеральда о сокращении тел при их движении сквозь эфир.

Другое предложение в 1899 году выдвинул Планк [23]. Оно основывалось на теории Стокса и заключалось в том, что обоим условиям теории Стокса (что движение эфира должно быть невихревым и что у поверхности Земли его скорость должна быть равна скорости Земли) можно удовлетворить, если допустить, что эфир сжимается по закону Бойля и подвержен тяготению. Вокруг Земли он сжат подобно атмосфере, при этом скорость света не зависит от сгущения эфира.

Однако теорию Стокса критиковали несколько авторов, среди которых был и Лоренц [8]. Эта критика состояла в том, что невихревое движение несжимаемой жидкости полностью определено, когда задана нормальная составляющая скорости на его границе. Так что если допустить, что эфир имеет такую же нормальную составляющую скорости, что и Земля, то он не сможет иметь такую же тангенциальную составляющую скорости. Отсюда следует, что в общем случае не существует такого движения, которое удовлетворяло бы уравнению Стокса, и эта сложность не была разрешена удовлетворительно ни одним из предложений, которые были выдвинуты для ее разрешения. Одно из таких предложений состоит в допущении о том, что движение Земли создает вихревое возмущение, которое, несмотря на то, что испускается со скоростью света, не влияет на более устойчивое невихревое движение.

Существенная революция среди физиков в представлениях об эфире произошла после опубликования принципов теории относительности А. Эйнштейном. Например, в 1905 году А. Эйнштейн пишет "Введение "светоносного эфира" окажется при этом излишним" [24, с.8]. В другой работе, в 1915 г. он пишет: ":следует отказаться от введения понятия эфира, который превратился лишь в бесполезный довесок к теории:" [24, с.416]. В 1920 г. он пишет: ":специальная теория относительности не требует безусловного отрицания эфира" [24, с.685]. А. Эйнштейн то признавал существование эфира, то отказывался от него. Последнее высказывание А. Эйнштейна относительно эфирной среды было сделано в 1952 г.: "Тем, что специальная теория относительности показала физическую эквивалентность всех инерциальных систем, она доказала несостоятельность гипотезы покоящегося эфира. Поэтому необходимо было отказаться от идеи, что электромагнитное поле должно рассматриваться как состояние некоторого материального носителя" [24, с.753].

Э. Уиттекер пишет [8, стр.359], что принятый принцип относительности разрушил все конкурирующие концепции эфира. Однако не все известные физики оказались согласны с удалением эфира и с самой теорией относительности.

Один из выдающихся физиков, Поль Дирак так описал свое понимание вакуума [25]: "Согласно этим новым представлениям, вакуум не является пустотой, в которой ничего не находится. Он заполнен колоссальным количеством электронов, находящимся в состоянии с отрицательной энергией, которое можно рассматривать как некий океан. Этот океан заполнен электронами без предела до величины отрицательной энергии, и поэтому нет ничего похожего на дно в этом электронном океане. Те явления, которые интересуют нас, это явления, происходящие у поверхности этого океана, а то, что происходит на глубине, не наблюдаемо и не представляет интереса. До тех пор, пока океан совершенно однороден, пока его поверхность плоская, он ненаблюдаем. Но если взять пригоршню воды из океана и поднять, то получающееся нарушение однородности будет тем, что наблюдается в виде электронов, представляющихся в этой картине, как поднятая часть воды и остающаяся на ее месте дырка, т.е. позитроны".

Другой выдающийся ученый, Л. Бриллюэн пришел к выводу, что ":общая теория относительности - блестящий пример великолепной математической теории, построенной на песке и ведущей к все большему нагромождению математики в космологии (типичный пример научной фантастики)" [1]. В книге "Новый взгляд на теорию относительности" он пишет, что и теория относительности, как и квантовая теория, возникли в начале 20-го столетия. Далее началось бурное развитие квантовой механики. Был открыт спин, принцип запрета Паули, волны де Бройля, уравнение Шредингера и многое другое. Эксперименты дополняли теорию, уточненная теория позволяла предсказать новые явления. Развитие квантовой механики продемонстрировало тот замечательный симбиоз теории и эксперимента, который ведет к безграничному росту знаний. Иное положение с теорией относительности. Подвергнутая только нескольким экспериментальным проверкам, она остается логически противоречивой. Она не дала той буйной поросли новых научных направлений, которую могла бы дать плодотворная теория. На ее поле до сих пор продолжаются тяжелые бои с логическими и физическими противоречиями в самой теории.

Заметим, что вышеприведенные аргументированные утверждения ученых с мировой известностью не могут быть проигнорированы. Последние научные достижения, особенно в области распространения радиоволн, в том числе и в космическом пространстве, открытие "скрытой материи" побуждают снова вернуться к решению проблемы эфира.

Если подвести некоторый итог, в 19-м столетии великими физиками разрабатывались две конкурирующие теории эфира. Одна из них, предложенная Декартом, Максвеллом и, в известной мере, Лоренцем, предполагала, что в эфире существуют вихри из каких-то очень мелких частиц. Потоки этих частиц образуют магнитные поля. Движения этих частиц от одного заряженного тела к другому обеспечивают электростатическое взаимодействие. Вторая теория, которую развивали МакКулаг, Томсон и Стокс, основывалась на том, что эфир представляет собой квазитвердое тело. Магнитные и электрические поля возникают в нем в результате определенного вида деформаций.

В настоящее время продолжаются попытки построить непротиворечивую теорию эфирной среды (вакуума). Как и в основных предшествующих работах 19-го века, разрабатываются в основном, две теории, - квазижидкостного (газоподобного) эфира и квазитвердого. Например, K.P. Sinha, C. Sivaram and E.C.G. Sudarshan предложили модель вакуума как сверхтекучей среды [26]. В этой статье, как и в нескольких предыдущих тех же авторов, развивается концепция о том, что светоносный эфир является сверхпроводящей жидкостью, состоящей из объединенных пар фермионов и антифермионов (как и например, электрон-позитрон, нейтрино-антинейтрино и др.). Эта сверхпроводящая жидкость рассматривается глобально стабильной и представляет собой основу универсума. Представляемая среда может содержать тензорные бозоны, которые могут иметь массу или быть безмассовыми. Они могут обеспечить механизм для сильного, электромагнитного и гравитационного взаимодействия. Как пишут авторы, концепция такова, что основное фермион-антифермионное взаимодействие может привести к многообразию проявляющихся сил и, кажется, может дать основу для обобщенной полевой теории.

В известной работе В.А. Ацюковского предлагается модель газоподобного эфира [27]. Магнитные поля этого эфира образуются вихревыми структурами. Имеется ряд других современных работ разной степени обоснованности, которые представляют эфир либо жидким, либо квазигазообразным [28, 29, 30].

Ряд других работ представляют модель квазитвердого эфира [12, 31, 32]. Как правило, в большей или меньшей степени эти работы исходят из модели (и развивают ее), предложенной МакКулагом.

Ниже нами предлагается и обосновывается, как нам представляется, наименее противоречивая модель, а именно модель квазитвердого эфира (эфирной среды). Предлагается решение второй большой проблемы, - почему эфир увлекается (частично) движущимися физическими телами на земной поверхности, но остается неподвижным относительно движущейся сквозь космическое пространство планеты Земля. Эфир представляется как всепроникающая среда, состоящая из частиц двух равных, но противоположных по знаку, видов. Показано, что эфир обладает определенными электромагнитными плотностью и упругостью. Объясняются отношения и взаимодействия между пространством, эфиром, физическими (весомыми) телами и временем. Обосновывается сущность наблюдаемых электромагнитных явлений, а также инерции и гравитации.

В связи с тем, что в последнее время термин "вакуум" многими исследователями трактуется как синоним понятия "эфир" приведем цитату Э. Уиттекера, - "мне кажется абсурдным сохранять название "вакуум" для категории, обладающей таким количеством физических свойств, а вот исторический термин "эфир" как нельзя лучше подходит для этой цели" [8].

к оглавлению